PaGMO  1.1.5
Public Types | Public Member Functions | Protected Member Functions | Friends
pagmo::problem::con2mo Class Reference

Constrainted to Multi-Objective meta-problem. More...

#include <con2mo.h>

Inheritance diagram for pagmo::problem::con2mo:
Inheritance graph
[legend]

Public Types

enum  method_type { OBJ_CSTRS = 0, OBJ_CSTRSVIO = 1, OBJ_EQVIO_INEQVIO = 2 }
 Mechanism used to deal with constraints in the objectives. More...
 
- Public Types inherited from pagmo::problem::base
typedef decision_vector::size_type size_type
 Problem's size type: the same as pagmo::decision_vector's size type.
 
typedef fitness_vector::size_type f_size_type
 Fitness' size type: the same as pagmo::fitness_vector's size type.
 
typedef constraint_vector::size_type c_size_type
 Constraints' size type: the same as pagmo::constraint_vector's size type.
 

Public Member Functions

 con2mo (const base &=cec2006(4), const method_type=OBJ_CSTRS)
 
base_ptr clone () const
 Clone method.
 
std::string get_name () const
 Get problem's name. More...
 
- Public Member Functions inherited from pagmo::problem::base_meta
 base_meta (const base &p=ackley(1), int n=1, int ni=0, int nf=1, int nc=0, int nic=0, const std::vector< double > &c_tol=std::vector< double >())
 Constructor.
 
 base_meta (const base_meta &p)
 Copy constructor.
 
- Public Member Functions inherited from pagmo::problem::base
 base (int, int=0, int=1, int=0, int=0, const double &=0)
 Constructor from global dimension, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More...
 
 base (int, int, int, int, int, const std::vector< double > &)
 Constructor from global dimension, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More...
 
 base (const double &, const double &, int, int=0, int=1, int=0, int=0, const double &=0)
 Constructor from values for lower and upper bounds, global dimension, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More...
 
 base (const decision_vector &, const decision_vector &, int=0, int=1, int=0, int=0, const double &=0)
 Constructor from upper/lower bounds, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More...
 
template<std::size_t N>
 base (const double(&v1)[N], const double(&v2)[N], int ni=0, int nf=1, int nc=0, int nic=0, const double &c_tol=0)
 Constructor from raw arrays, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More...
 
template<class Iterator1 , class Iterator2 >
 base (Iterator1 start1, Iterator1 end1, Iterator2 start2, Iterator2 end2, int ni=0, int nf=1, int nc=0, int nic=0, const double &c_tol=0)
 Constructor from iterators, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More...
 
virtual ~base ()
 Trivial destructor. More...
 
std::string human_readable () const
 Return human readable representation of the problem. More...
 
bool operator== (const base &) const
 Equality operator. More...
 
bool operator!= (const base &) const
 Inequality operator. More...
 
bool is_compatible (const base &) const
 Compatibility operator. More...
 
bool compare_x (const decision_vector &, const decision_vector &) const
 Compare decision vectors. More...
 
bool verify_x (const decision_vector &) const
 Verify compatibility of decision vector x with problem. More...
 
bool compare_fc (const fitness_vector &, const constraint_vector &, const fitness_vector &, const constraint_vector &) const
 Simultaneous fitness-constraint comparison. More...
 
virtual void pre_evolution (population &) const
 Pre-evolution hook. More...
 
virtual void post_evolution (population &) const
 Post-evolution hook. More...
 
virtual void set_sparsity (int &lenG, std::vector< int > &iGfun, std::vector< int > &jGvar) const
 Sets the sparsity pattern of the gradient. More...
 
const decision_vectorget_lb () const
 Lower bounds getter. More...
 
const decision_vectorget_ub () const
 Upper bounds getter. More...
 
void set_bounds (const decision_vector &, const decision_vector &)
 Bounds setter from pagmo::decision_vector. More...
 
template<class Iterator1 , class Iterator2 >
void set_bounds (Iterator1 start1, Iterator1 end1, Iterator2 start2, Iterator2 end2)
 Bounds setter from iterators. More...
 
template<std::size_t N>
void set_bounds (const double(&v1)[N], const double(&v2)[N])
 Bounds setter from raw arrays. More...
 
void set_bounds (const double &, const double &)
 Set bounds to specified values. More...
 
void set_bounds (int, const double &, const double &)
 Set bounds to specified values. More...
 
void set_lb (const decision_vector &)
 Set lower bounds from pagmo::decision_vector. More...
 
void set_lb (int, const double &)
 Set specific lower bound to value. More...
 
void set_lb (const double &)
 Set all lower bounds to value. More...
 
template<class Iterator >
void set_lb (Iterator start, Iterator end)
 Lower bounds setter from iterators. More...
 
template<std::size_t N>
void set_lb (const double(&v)[N])
 Lower bounds setter from raw array. More...
 
void set_ub (const decision_vector &)
 Set upper bounds from pagmo::decision_vector. More...
 
void set_ub (int, const double &)
 Set specific upper bound to value. More...
 
void set_ub (const double &)
 Set all upper bounds to value. More...
 
template<class Iterator >
void set_ub (Iterator start, Iterator end)
 Upper bounds setter from iterators. More...
 
template<std::size_t N>
void set_ub (const double(&v)[N])
 Upper bounds setter from raw array. More...
 
unsigned int get_fevals () const
 Return number of function evaluations. More...
 
unsigned int get_cevals () const
 Return number of constraints function evaluations. More...
 
size_type get_dimension () const
 Return global dimension. More...
 
size_type get_i_dimension () const
 Return integer dimension. More...
 
f_size_type get_f_dimension () const
 Return fitness dimension. More...
 
c_size_type get_c_dimension () const
 Return global constraints dimension. More...
 
c_size_type get_ic_dimension () const
 Return inequality constraints dimension. More...
 
const std::vector< double > & get_c_tol () const
 Return constraints tolerance. More...
 
double get_diameter () const
 Get the diameter of the problem. More...
 
constraint_vector compute_constraints (const decision_vector &) const
 Compute constraints and return constraint vector. More...
 
void compute_constraints (constraint_vector &, const decision_vector &) const
 Compute constraints and write them into contraint vector. More...
 
bool compare_constraints (const constraint_vector &, const constraint_vector &) const
 Compare constraint vectors. More...
 
bool test_constraint (const constraint_vector &, const c_size_type &) const
 Test i-th constraint of c (using tolerance information). More...
 
bool feasibility_x (const decision_vector &) const
 Test feasibility of decision vector. More...
 
bool feasibility_c (const constraint_vector &) const
 Test feasibility of constraint vector. More...
 
fitness_vector objfun (const decision_vector &) const
 Return fitness of pagmo::decision_vector. More...
 
void objfun (fitness_vector &, const decision_vector &) const
 Write fitness of pagmo::decision_vector into pagmo::fitness_vector. More...
 
bool compare_fitness (const fitness_vector &, const fitness_vector &) const
 Compare fitness vectors. More...
 
void reset_caches () const
 Reset internal caches. More...
 
const std::vector< constraint_vector > & get_best_c (void) const
 Get the best known constraint vector. More...
 
const std::vector< decision_vector > & get_best_x (void) const
 Get the best known decision vector. More...
 
const std::vector< fitness_vector > & get_best_f (void) const
 Get the best known fitness vector. More...
 
void set_best_x (const std::vector< decision_vector > &)
 Sets the best known decision vectors. More...
 

Protected Member Functions

std::string human_readable_extra () const
 Extra human readable info for the problem. More...
 
void objfun_impl (fitness_vector &, const decision_vector &) const
 
- Protected Member Functions inherited from pagmo::problem::base_meta
bool compare_fitness_impl (const fitness_vector &f1, const fitness_vector &f2) const
 Implementation of fitness vectors comparison. More...
 
bool compare_constraints_impl (const constraint_vector &c1, const constraint_vector &c2) const
 Implementation of constraint vector comparison. More...
 
bool compare_fc_impl (const fitness_vector &f1, const constraint_vector &c1, const fitness_vector &f2, const constraint_vector &c2) const
 Implementation of simultaneous fitness-constraint comparison. More...
 
- Protected Member Functions inherited from pagmo::problem::base
virtual bool equality_operator_extra (const base &) const
 Extra requirements for equality. More...
 
void estimate_sparsity (const decision_vector &, int &lenG, std::vector< int > &iGfun, std::vector< int > &jGvar) const
 Heuristics to estimate the sparsity pattern of the problem. More...
 
void estimate_sparsity (int &lenG, std::vector< int > &iGfun, std::vector< int > &jGvar) const
 Heuristics to estimate the sparsity pattern of the problem. More...
 
virtual void compute_constraints_impl (constraint_vector &, const decision_vector &) const
 Implementation of constraint computation. More...
 

Friends

class boost::serialization::access
 

Additional Inherited Members

- Static Public Attributes inherited from pagmo::problem::base
static const std::size_t cache_capacity = 5
 Capacity of the internal caches.
 
- Protected Attributes inherited from pagmo::problem::base_meta
base_ptr m_original_problem
 Smart pointer to the original problem instance.
 

Detailed Description

Constrainted to Multi-Objective meta-problem.

Implements a meta-problem class that wraps some other constrained problems, resulting in multi-objective problem.

Three implementations of the constrained to multi-objective are available. For a problem with m constraints, m+nobj objective functions, the first objectives functions are the original objective functions. The first implementation is the constrained to multi-objective defined by Coello Coello. The objectives defined from constraints includes number of violated constraints and objective functions. The second implementation is the COMOGA multi-objective problem: a nobj+1 problem with the last objective the sum of the violations of the constraints. The third implementation is the same as the second one but splitting the sum of violations between equality and inequality constraints, resulting in a total of nobj+2 objectives problem.

Note: This constraints handling technique can only be used for MINIMIZATION problems.

See also
Coello Coello, C. A. (2002). Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Computer methods in applied mechanics and engineering, 191(11), 1245-1287.
Coello, C. A. C. (2000). Treating constraints as objectives for single-objective evolutionary optimization. Engineering Optimization+ A35, 32(3), 275-308.
Author
Jeremie Labroquere (jerem.nosp@m.ie.l.nosp@m.abroq.nosp@m.uere.nosp@m.@gmai.nosp@m.l.co.nosp@m.m)

Definition at line 60 of file con2mo.h.

Member Enumeration Documentation

Mechanism used to deal with constraints in the objectives.

Definition of three types of constrained to multi-objective. OBJ_CSTRS is the approach suggest by Coello: the single objective constrained problem is transformed into a multiobjective unconstrained problem with m+1 objectives functions (where m is the number of constraints) OBJ_CSTRSVIO: the single objective constrained problem is transformed into a nobj+1 objectives unconstrained problem with the original fitness functions as first objectives and the aggregation of the constraints violation as last objective OBJ_EQVIO_INEQVIO: the single objective constrained problem is transformed into a nobj+2 objectives unconstrained problem with the original fitness functions as first objectives, the aggregation of the inequality constraints violations as second last objective and the sum of violation of the equality constraints violations as last objective.

Enumerator
OBJ_CSTRS 

Each constraint violation is transformed into one objective.

OBJ_CSTRSVIO 

The total constraint violation is addd as one objective.

OBJ_EQVIO_INEQVIO 

The total constraint violation is addd as two objectives (equalities + inequalities)

Definition at line 75 of file con2mo.h.

Constructor & Destructor Documentation

pagmo::problem::con2mo::con2mo ( const base problem = cec2006(4),
const method_type  method = OBJ_CSTRS 
)

Constructor using initial constrained problem

Parameters
[in]problembase::problem to be modified to use a constrained to multi-objective handling technique.
[in]methodmethod_type to be modified to use a single constrained to multi-objective approach defined with OBJ_CSTRS, OBJ_CSTRSVIO or OBJ_EQVIO_INEQVIO

Definition at line 79 of file con2mo.cpp.

Member Function Documentation

std::string pagmo::problem::con2mo::get_name ( ) const
virtual

Get problem's name.

Default implementation will return the problem's mangled C++ name.

Returns
name of the problem.

Reimplemented from pagmo::problem::base.

Definition at line 220 of file con2mo.cpp.

std::string pagmo::problem::con2mo::human_readable_extra ( ) const
protectedvirtual

Extra human readable info for the problem.

Will return a formatted string containing the type of constraint handling

Reimplemented from pagmo::problem::base.

Definition at line 197 of file con2mo.cpp.

void pagmo::problem::con2mo::objfun_impl ( fitness_vector f,
const decision_vector x 
) const
protectedvirtual

Implementation of the objective functions. (Wraps over the original implementation)

Implements pagmo::problem::base.

Definition at line 99 of file con2mo.cpp.


The documentation for this class was generated from the following files: