PaGMO  1.1.5
Data Structures | Public Member Functions | Protected Member Functions | Friends
pagmo::algorithm::vega Class Reference

VEGA based multi-objective algorithm. More...

#include <vega.h>

Inheritance diagram for pagmo::algorithm::vega:
Inheritance graph
[legend]

Data Structures

struct  crossover
 Crossover operator info. More...
 
struct  mutation
 Mutation operator info. More...
 

Public Member Functions

 vega (int gen=1, const double &cr=.95, const double &m=.02, int elitism=1, mutation::type mut=mutation::GAUSSIAN, double width=0.1, crossover::type cro=crossover::EXPONENTIAL)
 Constructor. More...
 
base_ptr clone () const
 Clone method.
 
std::string get_name () const
 Algorithm name.
 
void evolve (population &) const
 Evolve implementation. More...
 
- Public Member Functions inherited from pagmo::algorithm::base
 base ()
 Default constructor. More...
 
virtual ~base ()
 Trivial destructor. More...
 
std::string human_readable () const
 Return human readable representation of the algorithm. More...
 
void set_screen_output (const bool p)
 Setter-Getter for protected m_screen_output data. More...
 
bool get_screen_output () const
 Gets screen output. More...
 
void reset_rngs (const unsigned int) const
 Resets the seed of the internal rngs using a user-provided seed. More...
 

Protected Member Functions

std::string human_readable_extra () const
 Extra human readable algorithm info. More...
 

Friends

class boost::serialization::access
 

Additional Inherited Members

- Protected Attributes inherited from pagmo::algorithm::base
bool m_screen_output
 Indicates to the derived class whether to print stuff on screen.
 
rng_double m_drng
 Random number generator for double-precision floating point values.
 
rng_uint32 m_urng
 Random number generator for unsigned integer values.
 
unsigned int m_fevals
 A counter for the number of function evaluations.
 

Detailed Description

VEGA based multi-objective algorithm.

Implements of the VEGA (Vector evaluated genetic algorithms) multi-objective agorithm. This algorithm is based on a simple genetic algorithm where the initial population is split into the number of objectives. Each sub populations are associated one objective as fitness function and sub populations are selected according to it with a proportionate selection process. Then, the subpopulations are put into a mating pool. The resulting population is mutated.

See also
Schaffer, J. D. (1985, July). Multiple objective optimization with vector evaluated genetic algorithms. In Proceedings of the 1st international Conference on Genetic Algorithms (pp. 93-100). L. Erlbaum Associates Inc.
Deb Kalyanmoy (2001, June). Multi-Objective Optimization Using Evolutionary Algorithms.
Author
Jeremie Labroquere (jerem.nosp@m.ie.l.nosp@m.abroq.nosp@m.uere.nosp@m.@gmai.nosp@m.l.co.nosp@m.m)

Definition at line 51 of file vega.h.

Constructor & Destructor Documentation

pagmo::algorithm::vega::vega ( int  gen = 1,
const double &  cr = .95,
const double &  m = .02,
int  elitism = 1,
mutation::type  mut = mutation::GAUSSIAN,
double  width = 0.1,
crossover::type  cro = crossover::EXPONENTIAL 
)

Constructor.

Allows to specify in detail all the parameters of the vega multi-objective algorithm.

Parameters
[in]genNumber of generations to evolve.
[in]crCrossover probability (of each allele if binomial crossover)
[in]mMutation probability (of each allele)
[in]elitismThe best individual is reinserted in the population each elitism generations
[in]mutMutation type. One of sga::mutation::GAUSSIAN, sga::mutation::RANDOM
[in]widthMutation width. When gaussian mutation is selected is the width of the mutation
[in]croCrossover type. One of sga::crossover::BINOMIAL, sga::crossover::EXPONENTIAL
Exceptions
value_errorif gen is negative, crossover probability is not $ \in [0,1]$, mutation probability is not $ \in [0,1]$, elitism is <=0

Definition at line 58 of file vega.cpp.

Member Function Documentation

void pagmo::algorithm::vega::evolve ( population pop) const
virtual

Evolve implementation.

Run the vega algorithm for the number of generations specified in the constructors.

Parameters
[in,out]popinput/output pagmo::population to be evolved.

We now set the cleared pop. cur_x is the best_x, re-evaluated with new seed.

Implements pagmo::algorithm::base.

Definition at line 91 of file vega.cpp.

std::string pagmo::algorithm::vega::human_readable_extra ( ) const
protectedvirtual

Extra human readable algorithm info.

Returns
a formatted string displaying the parameters of the algorithm.

Reimplemented from pagmo::algorithm::base.

Definition at line 409 of file vega.cpp.


The documentation for this class was generated from the following files: