PaGMO
1.1.5
|
Base Stochastic Optimization Problem. More...
#include <base_stochastic.h>
Public Member Functions | |
base_stochastic (int, unsigned int=0u) | |
Constructor from global dimension and random seed. More... | |
base_stochastic (int, int, int, int, int, const double &, unsigned int) | |
Constructor from global dimension, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More... | |
base_stochastic (int, int, int, int, int, const std::vector< double > &, unsigned int) | |
Constructor from global dimension, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance vector. More... | |
unsigned int | get_seed () const |
Gets the pseudo random generator seed. More... | |
void | set_seed (unsigned int) const |
Sets the pseudo random generator seed. More... | |
Public Member Functions inherited from pagmo::problem::base | |
base (int, int=0, int=1, int=0, int=0, const double &=0) | |
Constructor from global dimension, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More... | |
base (int, int, int, int, int, const std::vector< double > &) | |
Constructor from global dimension, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More... | |
base (const double &, const double &, int, int=0, int=1, int=0, int=0, const double &=0) | |
Constructor from values for lower and upper bounds, global dimension, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More... | |
base (const decision_vector &, const decision_vector &, int=0, int=1, int=0, int=0, const double &=0) | |
Constructor from upper/lower bounds, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More... | |
template<std::size_t N> | |
base (const double(&v1)[N], const double(&v2)[N], int ni=0, int nf=1, int nc=0, int nic=0, const double &c_tol=0) | |
Constructor from raw arrays, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More... | |
template<class Iterator1 , class Iterator2 > | |
base (Iterator1 start1, Iterator1 end1, Iterator2 start2, Iterator2 end2, int ni=0, int nf=1, int nc=0, int nic=0, const double &c_tol=0) | |
Constructor from iterators, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More... | |
virtual | ~base () |
Trivial destructor. More... | |
virtual base_ptr | clone () const =0 |
Clone method. More... | |
std::string | human_readable () const |
Return human readable representation of the problem. More... | |
virtual std::string | human_readable_extra () const |
Extra information in human readable format. More... | |
bool | operator== (const base &) const |
Equality operator. More... | |
bool | operator!= (const base &) const |
Inequality operator. More... | |
bool | is_compatible (const base &) const |
Compatibility operator. More... | |
bool | compare_x (const decision_vector &, const decision_vector &) const |
Compare decision vectors. More... | |
bool | verify_x (const decision_vector &) const |
Verify compatibility of decision vector x with problem. More... | |
bool | compare_fc (const fitness_vector &, const constraint_vector &, const fitness_vector &, const constraint_vector &) const |
Simultaneous fitness-constraint comparison. More... | |
virtual void | pre_evolution (population &) const |
Pre-evolution hook. More... | |
virtual void | post_evolution (population &) const |
Post-evolution hook. More... | |
virtual void | set_sparsity (int &lenG, std::vector< int > &iGfun, std::vector< int > &jGvar) const |
Sets the sparsity pattern of the gradient. More... | |
const decision_vector & | get_lb () const |
Lower bounds getter. More... | |
const decision_vector & | get_ub () const |
Upper bounds getter. More... | |
void | set_bounds (const decision_vector &, const decision_vector &) |
Bounds setter from pagmo::decision_vector. More... | |
template<class Iterator1 , class Iterator2 > | |
void | set_bounds (Iterator1 start1, Iterator1 end1, Iterator2 start2, Iterator2 end2) |
Bounds setter from iterators. More... | |
template<std::size_t N> | |
void | set_bounds (const double(&v1)[N], const double(&v2)[N]) |
Bounds setter from raw arrays. More... | |
void | set_bounds (const double &, const double &) |
Set bounds to specified values. More... | |
void | set_bounds (int, const double &, const double &) |
Set bounds to specified values. More... | |
void | set_lb (const decision_vector &) |
Set lower bounds from pagmo::decision_vector. More... | |
void | set_lb (int, const double &) |
Set specific lower bound to value. More... | |
void | set_lb (const double &) |
Set all lower bounds to value. More... | |
template<class Iterator > | |
void | set_lb (Iterator start, Iterator end) |
Lower bounds setter from iterators. More... | |
template<std::size_t N> | |
void | set_lb (const double(&v)[N]) |
Lower bounds setter from raw array. More... | |
void | set_ub (const decision_vector &) |
Set upper bounds from pagmo::decision_vector. More... | |
void | set_ub (int, const double &) |
Set specific upper bound to value. More... | |
void | set_ub (const double &) |
Set all upper bounds to value. More... | |
template<class Iterator > | |
void | set_ub (Iterator start, Iterator end) |
Upper bounds setter from iterators. More... | |
template<std::size_t N> | |
void | set_ub (const double(&v)[N]) |
Upper bounds setter from raw array. More... | |
unsigned int | get_fevals () const |
Return number of function evaluations. More... | |
unsigned int | get_cevals () const |
Return number of constraints function evaluations. More... | |
size_type | get_dimension () const |
Return global dimension. More... | |
size_type | get_i_dimension () const |
Return integer dimension. More... | |
f_size_type | get_f_dimension () const |
Return fitness dimension. More... | |
c_size_type | get_c_dimension () const |
Return global constraints dimension. More... | |
c_size_type | get_ic_dimension () const |
Return inequality constraints dimension. More... | |
const std::vector< double > & | get_c_tol () const |
Return constraints tolerance. More... | |
double | get_diameter () const |
Get the diameter of the problem. More... | |
virtual std::string | get_name () const |
Get problem's name. More... | |
constraint_vector | compute_constraints (const decision_vector &) const |
Compute constraints and return constraint vector. More... | |
void | compute_constraints (constraint_vector &, const decision_vector &) const |
Compute constraints and write them into contraint vector. More... | |
bool | compare_constraints (const constraint_vector &, const constraint_vector &) const |
Compare constraint vectors. More... | |
bool | test_constraint (const constraint_vector &, const c_size_type &) const |
Test i-th constraint of c (using tolerance information). More... | |
bool | feasibility_x (const decision_vector &) const |
Test feasibility of decision vector. More... | |
bool | feasibility_c (const constraint_vector &) const |
Test feasibility of constraint vector. More... | |
fitness_vector | objfun (const decision_vector &) const |
Return fitness of pagmo::decision_vector. More... | |
void | objfun (fitness_vector &, const decision_vector &) const |
Write fitness of pagmo::decision_vector into pagmo::fitness_vector. More... | |
bool | compare_fitness (const fitness_vector &, const fitness_vector &) const |
Compare fitness vectors. More... | |
void | reset_caches () const |
Reset internal caches. More... | |
const std::vector< constraint_vector > & | get_best_c (void) const |
Get the best known constraint vector. More... | |
const std::vector< decision_vector > & | get_best_x (void) const |
Get the best known decision vector. More... | |
const std::vector< fitness_vector > & | get_best_f (void) const |
Get the best known fitness vector. More... | |
void | set_best_x (const std::vector< decision_vector > &) |
Sets the best known decision vectors. More... | |
Protected Attributes | |
rng_double | m_drng |
Random number generator for double-precision floating point values. | |
rng_uint32 | m_urng |
Random number generator for unsigned integer values. | |
unsigned int | m_seed |
Seed of the random number generator. | |
Friends | |
class | boost::serialization::access |
Additional Inherited Members | |
Public Types inherited from pagmo::problem::base | |
typedef decision_vector::size_type | size_type |
Problem's size type: the same as pagmo::decision_vector's size type. | |
typedef fitness_vector::size_type | f_size_type |
Fitness' size type: the same as pagmo::fitness_vector's size type. | |
typedef constraint_vector::size_type | c_size_type |
Constraints' size type: the same as pagmo::constraint_vector's size type. | |
Static Public Attributes inherited from pagmo::problem::base | |
static const std::size_t | cache_capacity = 5 |
Capacity of the internal caches. | |
Protected Member Functions inherited from pagmo::problem::base | |
virtual bool | equality_operator_extra (const base &) const |
Extra requirements for equality. More... | |
virtual bool | compare_fc_impl (const fitness_vector &, const constraint_vector &, const fitness_vector &, const constraint_vector &) const |
Implementation of simultaneous fitness-constraint comparison. More... | |
void | estimate_sparsity (const decision_vector &, int &lenG, std::vector< int > &iGfun, std::vector< int > &jGvar) const |
Heuristics to estimate the sparsity pattern of the problem. More... | |
void | estimate_sparsity (int &lenG, std::vector< int > &iGfun, std::vector< int > &jGvar) const |
Heuristics to estimate the sparsity pattern of the problem. More... | |
virtual void | compute_constraints_impl (constraint_vector &, const decision_vector &) const |
Implementation of constraint computation. More... | |
virtual bool | compare_constraints_impl (const constraint_vector &, const constraint_vector &) const |
Implementation of constraint vector comparison. More... | |
virtual bool | compare_fitness_impl (const fitness_vector &, const fitness_vector &) const |
Implementation of fitness vectors comparison. More... | |
virtual void | objfun_impl (fitness_vector &f, const decision_vector &x) const =0 |
Objective function implementation. More... | |
Base Stochastic Optimization Problem.
A stochastic optimization problem is a problem that seeks to optimize , i.e. the expected value of some stochastic quantity dependant from the doecision vector.
These types of problems, in PaGMO, need to iherit from this base class and reimplement the pagmo::problem::base class virtual method objfun_impl starting with the following lines setting the rngs seed: m_drng.seed(m_seed); m_urng.seed(m_seed);
Look at pagmo::problem::inventory and pagmo::problem::spheres for a typical example.
Optimization techniques (pagmo::algorithm) that want to deal with these types of problems need to take care to change appropriately the seed during the optimization process as to avoid overfitting (that is to avoid solving the problem only for one pseudo random sequence, and not for any). This is done by a call to the change_seed() method.
See pagmo::algorithm::pso_stochastic for a good example of such techniques.
Definition at line 56 of file base_stochastic.h.
pagmo::problem::base_stochastic::base_stochastic | ( | int | dim, |
unsigned int | seed = 0u |
||
) |
Constructor from global dimension and random seed.
Lower and upper bounds are set to 0 and 1 respectively. The problem built is unconstrained, single objective and with no integer dimension.
[in] | dim | global dimension of the problem. |
[in] | seed | random number generator seed |
Definition at line 39 of file base_stochastic.cpp.
pagmo::problem::base_stochastic::base_stochastic | ( | int | n, |
int | ni, | ||
int | nf, | ||
int | nc, | ||
int | nic, | ||
const double & | c_tol, | ||
unsigned int | seed | ||
) |
Constructor from global dimension, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance.
[in] | n | global dimension of the problem. |
[in] | ni | dimension of the combinatorial part of the problem. |
[in] | nf | dimension of the fitness vector of the problem. |
[in] | nc | global number of constraints. |
[in] | nic | number of inequality constraints. |
[in] | c_tol | constraints tolerance (equal for all constraints) |
[in] | seed | random number generator seed |
Definition at line 53 of file base_stochastic.cpp.
pagmo::problem::base_stochastic::base_stochastic | ( | int | n, |
int | ni, | ||
int | nf, | ||
int | nc, | ||
int | nic, | ||
const std::vector< double > & | c_tol, | ||
unsigned int | seed | ||
) |
Constructor from global dimension, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance vector.
[in] | n | global dimension of the problem. |
[in] | ni | dimension of the combinatorial part of the problem. |
[in] | nf | dimension of the fitness vector of the problem. |
[in] | nc | global number of constraints. |
[in] | nic | number of inequality constraints. |
[in] | c_tol | constraints tolerance std::vector |
[in] | seed | random number generator seed |
Definition at line 67 of file base_stochastic.cpp.
unsigned int pagmo::problem::base_stochastic::get_seed | ( | ) | const |
Gets the pseudo random generator seed.
Gets the pseudo random generator seed.
Definition at line 89 of file base_stochastic.cpp.
void pagmo::problem::base_stochastic::set_seed | ( | unsigned int | seed | ) | const |
Sets the pseudo random generator seed.
Sets the pseudo random generator seed.
[in] | seed | random number generator seed |
Definition at line 77 of file base_stochastic.cpp.