PaGMO  1.1.5
Public Member Functions | Protected Member Functions | Friends
pagmo::problem::base_unc_mo Class Reference

Base Class for Unconstrained Multi-objective problems. More...

#include <base_unc_mo.h>

Inheritance diagram for pagmo::problem::base_unc_mo:
Inheritance graph
[legend]

Public Member Functions

 base_unc_mo (base::size_type, base::size_type, base::f_size_type)
 Constructor from dimension and fitness dimension. More...
 
double p_distance (const decision_vector &) const
 Distance from the Pareto front (of a decision_vector) More...
 
double p_distance (const pagmo::population &) const
 Distance from the Pareto front (of a population) More...
 
- Public Member Functions inherited from pagmo::problem::base
 base (int, int=0, int=1, int=0, int=0, const double &=0)
 Constructor from global dimension, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More...
 
 base (int, int, int, int, int, const std::vector< double > &)
 Constructor from global dimension, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More...
 
 base (const double &, const double &, int, int=0, int=1, int=0, int=0, const double &=0)
 Constructor from values for lower and upper bounds, global dimension, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More...
 
 base (const decision_vector &, const decision_vector &, int=0, int=1, int=0, int=0, const double &=0)
 Constructor from upper/lower bounds, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More...
 
template<std::size_t N>
 base (const double(&v1)[N], const double(&v2)[N], int ni=0, int nf=1, int nc=0, int nic=0, const double &c_tol=0)
 Constructor from raw arrays, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More...
 
template<class Iterator1 , class Iterator2 >
 base (Iterator1 start1, Iterator1 end1, Iterator2 start2, Iterator2 end2, int ni=0, int nf=1, int nc=0, int nic=0, const double &c_tol=0)
 Constructor from iterators, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More...
 
virtual ~base ()
 Trivial destructor. More...
 
virtual base_ptr clone () const =0
 Clone method. More...
 
std::string human_readable () const
 Return human readable representation of the problem. More...
 
virtual std::string human_readable_extra () const
 Extra information in human readable format. More...
 
bool operator== (const base &) const
 Equality operator. More...
 
bool operator!= (const base &) const
 Inequality operator. More...
 
bool is_compatible (const base &) const
 Compatibility operator. More...
 
bool compare_x (const decision_vector &, const decision_vector &) const
 Compare decision vectors. More...
 
bool verify_x (const decision_vector &) const
 Verify compatibility of decision vector x with problem. More...
 
bool compare_fc (const fitness_vector &, const constraint_vector &, const fitness_vector &, const constraint_vector &) const
 Simultaneous fitness-constraint comparison. More...
 
virtual void pre_evolution (population &) const
 Pre-evolution hook. More...
 
virtual void post_evolution (population &) const
 Post-evolution hook. More...
 
virtual void set_sparsity (int &lenG, std::vector< int > &iGfun, std::vector< int > &jGvar) const
 Sets the sparsity pattern of the gradient. More...
 
const decision_vectorget_lb () const
 Lower bounds getter. More...
 
const decision_vectorget_ub () const
 Upper bounds getter. More...
 
void set_bounds (const decision_vector &, const decision_vector &)
 Bounds setter from pagmo::decision_vector. More...
 
template<class Iterator1 , class Iterator2 >
void set_bounds (Iterator1 start1, Iterator1 end1, Iterator2 start2, Iterator2 end2)
 Bounds setter from iterators. More...
 
template<std::size_t N>
void set_bounds (const double(&v1)[N], const double(&v2)[N])
 Bounds setter from raw arrays. More...
 
void set_bounds (const double &, const double &)
 Set bounds to specified values. More...
 
void set_bounds (int, const double &, const double &)
 Set bounds to specified values. More...
 
void set_lb (const decision_vector &)
 Set lower bounds from pagmo::decision_vector. More...
 
void set_lb (int, const double &)
 Set specific lower bound to value. More...
 
void set_lb (const double &)
 Set all lower bounds to value. More...
 
template<class Iterator >
void set_lb (Iterator start, Iterator end)
 Lower bounds setter from iterators. More...
 
template<std::size_t N>
void set_lb (const double(&v)[N])
 Lower bounds setter from raw array. More...
 
void set_ub (const decision_vector &)
 Set upper bounds from pagmo::decision_vector. More...
 
void set_ub (int, const double &)
 Set specific upper bound to value. More...
 
void set_ub (const double &)
 Set all upper bounds to value. More...
 
template<class Iterator >
void set_ub (Iterator start, Iterator end)
 Upper bounds setter from iterators. More...
 
template<std::size_t N>
void set_ub (const double(&v)[N])
 Upper bounds setter from raw array. More...
 
unsigned int get_fevals () const
 Return number of function evaluations. More...
 
unsigned int get_cevals () const
 Return number of constraints function evaluations. More...
 
size_type get_dimension () const
 Return global dimension. More...
 
size_type get_i_dimension () const
 Return integer dimension. More...
 
f_size_type get_f_dimension () const
 Return fitness dimension. More...
 
c_size_type get_c_dimension () const
 Return global constraints dimension. More...
 
c_size_type get_ic_dimension () const
 Return inequality constraints dimension. More...
 
const std::vector< double > & get_c_tol () const
 Return constraints tolerance. More...
 
double get_diameter () const
 Get the diameter of the problem. More...
 
virtual std::string get_name () const
 Get problem's name. More...
 
constraint_vector compute_constraints (const decision_vector &) const
 Compute constraints and return constraint vector. More...
 
void compute_constraints (constraint_vector &, const decision_vector &) const
 Compute constraints and write them into contraint vector. More...
 
bool compare_constraints (const constraint_vector &, const constraint_vector &) const
 Compare constraint vectors. More...
 
bool test_constraint (const constraint_vector &, const c_size_type &) const
 Test i-th constraint of c (using tolerance information). More...
 
bool feasibility_x (const decision_vector &) const
 Test feasibility of decision vector. More...
 
bool feasibility_c (const constraint_vector &) const
 Test feasibility of constraint vector. More...
 
fitness_vector objfun (const decision_vector &) const
 Return fitness of pagmo::decision_vector. More...
 
void objfun (fitness_vector &, const decision_vector &) const
 Write fitness of pagmo::decision_vector into pagmo::fitness_vector. More...
 
bool compare_fitness (const fitness_vector &, const fitness_vector &) const
 Compare fitness vectors. More...
 
void reset_caches () const
 Reset internal caches. More...
 
const std::vector< constraint_vector > & get_best_c (void) const
 Get the best known constraint vector. More...
 
const std::vector< decision_vector > & get_best_x (void) const
 Get the best known decision vector. More...
 
const std::vector< fitness_vector > & get_best_f (void) const
 Get the best known fitness vector. More...
 
void set_best_x (const std::vector< decision_vector > &)
 Sets the best known decision vectors. More...
 

Protected Member Functions

virtual double convergence_metric (const decision_vector &) const
 Default implementation for a convergence metric. More...
 
- Protected Member Functions inherited from pagmo::problem::base
virtual bool equality_operator_extra (const base &) const
 Extra requirements for equality. More...
 
virtual bool compare_fc_impl (const fitness_vector &, const constraint_vector &, const fitness_vector &, const constraint_vector &) const
 Implementation of simultaneous fitness-constraint comparison. More...
 
void estimate_sparsity (const decision_vector &, int &lenG, std::vector< int > &iGfun, std::vector< int > &jGvar) const
 Heuristics to estimate the sparsity pattern of the problem. More...
 
void estimate_sparsity (int &lenG, std::vector< int > &iGfun, std::vector< int > &jGvar) const
 Heuristics to estimate the sparsity pattern of the problem. More...
 
virtual void compute_constraints_impl (constraint_vector &, const decision_vector &) const
 Implementation of constraint computation. More...
 
virtual bool compare_constraints_impl (const constraint_vector &, const constraint_vector &) const
 Implementation of constraint vector comparison. More...
 
virtual bool compare_fitness_impl (const fitness_vector &, const fitness_vector &) const
 Implementation of fitness vectors comparison. More...
 
virtual void objfun_impl (fitness_vector &f, const decision_vector &x) const =0
 Objective function implementation. More...
 

Friends

class boost::serialization::access
 

Additional Inherited Members

- Public Types inherited from pagmo::problem::base
typedef decision_vector::size_type size_type
 Problem's size type: the same as pagmo::decision_vector's size type.
 
typedef fitness_vector::size_type f_size_type
 Fitness' size type: the same as pagmo::fitness_vector's size type.
 
typedef constraint_vector::size_type c_size_type
 Constraints' size type: the same as pagmo::constraint_vector's size type.
 
- Static Public Attributes inherited from pagmo::problem::base
static const std::size_t cache_capacity = 5
 Capacity of the internal caches.
 

Detailed Description

Base Class for Unconstrained Multi-objective problems.

This class adds to pagmo::problem::base the virtual method p_distance which returns the convergence metric of an individual or a population if the user re-implemented the convergence_metric virtual method. Only unconstrained multi-objective problems can derive from this class.

In problems where it is possible, the user needs to derive from pagmo::problem::base_unc_mo and reimplement the virtual method double base_unc_mo::convergence_metric(const decision_vector &x) (typically returning 0 if x lies on the Pareto Front)

Author
Dario Izzo (dario.nosp@m..izz.nosp@m.o@gma.nosp@m.il.c.nosp@m.om)

Definition at line 47 of file base_unc_mo.h.

Constructor & Destructor Documentation

pagmo::problem::base_unc_mo::base_unc_mo ( base::size_type  n,
base::size_type  ni,
base::f_size_type  nf 
)

Constructor from dimension and fitness dimension.

Will construct an n dimensional unconstrained multi-objective problem with nf objectives

Parameters
[in]ndimension of the problem.
[in]niinteger dimension of the problem.
[in]nfnumber of objectives
See also
problem::base constructors.

Definition at line 43 of file base_unc_mo.cpp.

Member Function Documentation

double pagmo::problem::base_unc_mo::convergence_metric ( const decision_vector x) const
protectedvirtual

Default implementation for a convergence metric.

Parameters
[in]xdecision_vector
Exceptions
not_implemented_erroralways

Reimplemented in pagmo::problem::zdt.

Definition at line 83 of file base_unc_mo.cpp.

double pagmo::problem::base_unc_mo::p_distance ( const decision_vector x) const

Distance from the Pareto front (of a decision_vector)

Will return the convergence metric of the decision_vector

Parameters
[in]xdecision_vector

Definition at line 70 of file base_unc_mo.cpp.

double pagmo::problem::base_unc_mo::p_distance ( const pagmo::population pop) const

Distance from the Pareto front (of a population)

Will return the average across the entire population of the convergence metric

Parameters
[in]poppopulation to be assigned a pareto distance
See also
problem::base_unc_mo::p_distance virtual method.

Definition at line 53 of file base_unc_mo.cpp.


The documentation for this class was generated from the following files: