PaGMO
1.1.5
|
Base DTLZ Multi-objective optimization problem. More...
#include <base_dtlz.h>
Public Member Functions | |
base_dtlz (int, int) | |
Constructor. | |
virtual base_ptr | clone () const =0 |
Clone method. | |
Public Member Functions inherited from pagmo::problem::base_unc_mo | |
base_unc_mo (base::size_type, base::size_type, base::f_size_type) | |
Constructor from dimension and fitness dimension. More... | |
double | p_distance (const decision_vector &) const |
Distance from the Pareto front (of a decision_vector) More... | |
double | p_distance (const pagmo::population &) const |
Distance from the Pareto front (of a population) More... | |
Public Member Functions inherited from pagmo::problem::base | |
base (int, int=0, int=1, int=0, int=0, const double &=0) | |
Constructor from global dimension, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More... | |
base (int, int, int, int, int, const std::vector< double > &) | |
Constructor from global dimension, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More... | |
base (const double &, const double &, int, int=0, int=1, int=0, int=0, const double &=0) | |
Constructor from values for lower and upper bounds, global dimension, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More... | |
base (const decision_vector &, const decision_vector &, int=0, int=1, int=0, int=0, const double &=0) | |
Constructor from upper/lower bounds, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More... | |
template<std::size_t N> | |
base (const double(&v1)[N], const double(&v2)[N], int ni=0, int nf=1, int nc=0, int nic=0, const double &c_tol=0) | |
Constructor from raw arrays, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More... | |
template<class Iterator1 , class Iterator2 > | |
base (Iterator1 start1, Iterator1 end1, Iterator2 start2, Iterator2 end2, int ni=0, int nf=1, int nc=0, int nic=0, const double &c_tol=0) | |
Constructor from iterators, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More... | |
virtual | ~base () |
Trivial destructor. More... | |
std::string | human_readable () const |
Return human readable representation of the problem. More... | |
virtual std::string | human_readable_extra () const |
Extra information in human readable format. More... | |
bool | operator== (const base &) const |
Equality operator. More... | |
bool | operator!= (const base &) const |
Inequality operator. More... | |
bool | is_compatible (const base &) const |
Compatibility operator. More... | |
bool | compare_x (const decision_vector &, const decision_vector &) const |
Compare decision vectors. More... | |
bool | verify_x (const decision_vector &) const |
Verify compatibility of decision vector x with problem. More... | |
bool | compare_fc (const fitness_vector &, const constraint_vector &, const fitness_vector &, const constraint_vector &) const |
Simultaneous fitness-constraint comparison. More... | |
virtual void | pre_evolution (population &) const |
Pre-evolution hook. More... | |
virtual void | post_evolution (population &) const |
Post-evolution hook. More... | |
virtual void | set_sparsity (int &lenG, std::vector< int > &iGfun, std::vector< int > &jGvar) const |
Sets the sparsity pattern of the gradient. More... | |
const decision_vector & | get_lb () const |
Lower bounds getter. More... | |
const decision_vector & | get_ub () const |
Upper bounds getter. More... | |
void | set_bounds (const decision_vector &, const decision_vector &) |
Bounds setter from pagmo::decision_vector. More... | |
template<class Iterator1 , class Iterator2 > | |
void | set_bounds (Iterator1 start1, Iterator1 end1, Iterator2 start2, Iterator2 end2) |
Bounds setter from iterators. More... | |
template<std::size_t N> | |
void | set_bounds (const double(&v1)[N], const double(&v2)[N]) |
Bounds setter from raw arrays. More... | |
void | set_bounds (const double &, const double &) |
Set bounds to specified values. More... | |
void | set_bounds (int, const double &, const double &) |
Set bounds to specified values. More... | |
void | set_lb (const decision_vector &) |
Set lower bounds from pagmo::decision_vector. More... | |
void | set_lb (int, const double &) |
Set specific lower bound to value. More... | |
void | set_lb (const double &) |
Set all lower bounds to value. More... | |
template<class Iterator > | |
void | set_lb (Iterator start, Iterator end) |
Lower bounds setter from iterators. More... | |
template<std::size_t N> | |
void | set_lb (const double(&v)[N]) |
Lower bounds setter from raw array. More... | |
void | set_ub (const decision_vector &) |
Set upper bounds from pagmo::decision_vector. More... | |
void | set_ub (int, const double &) |
Set specific upper bound to value. More... | |
void | set_ub (const double &) |
Set all upper bounds to value. More... | |
template<class Iterator > | |
void | set_ub (Iterator start, Iterator end) |
Upper bounds setter from iterators. More... | |
template<std::size_t N> | |
void | set_ub (const double(&v)[N]) |
Upper bounds setter from raw array. More... | |
unsigned int | get_fevals () const |
Return number of function evaluations. More... | |
unsigned int | get_cevals () const |
Return number of constraints function evaluations. More... | |
size_type | get_dimension () const |
Return global dimension. More... | |
size_type | get_i_dimension () const |
Return integer dimension. More... | |
f_size_type | get_f_dimension () const |
Return fitness dimension. More... | |
c_size_type | get_c_dimension () const |
Return global constraints dimension. More... | |
c_size_type | get_ic_dimension () const |
Return inequality constraints dimension. More... | |
const std::vector< double > & | get_c_tol () const |
Return constraints tolerance. More... | |
double | get_diameter () const |
Get the diameter of the problem. More... | |
virtual std::string | get_name () const |
Get problem's name. More... | |
constraint_vector | compute_constraints (const decision_vector &) const |
Compute constraints and return constraint vector. More... | |
void | compute_constraints (constraint_vector &, const decision_vector &) const |
Compute constraints and write them into contraint vector. More... | |
bool | compare_constraints (const constraint_vector &, const constraint_vector &) const |
Compare constraint vectors. More... | |
bool | test_constraint (const constraint_vector &, const c_size_type &) const |
Test i-th constraint of c (using tolerance information). More... | |
bool | feasibility_x (const decision_vector &) const |
Test feasibility of decision vector. More... | |
bool | feasibility_c (const constraint_vector &) const |
Test feasibility of constraint vector. More... | |
fitness_vector | objfun (const decision_vector &) const |
Return fitness of pagmo::decision_vector. More... | |
void | objfun (fitness_vector &, const decision_vector &) const |
Write fitness of pagmo::decision_vector into pagmo::fitness_vector. More... | |
bool | compare_fitness (const fitness_vector &, const fitness_vector &) const |
Compare fitness vectors. More... | |
void | reset_caches () const |
Reset internal caches. More... | |
const std::vector< constraint_vector > & | get_best_c (void) const |
Get the best known constraint vector. More... | |
const std::vector< decision_vector > & | get_best_x (void) const |
Get the best known decision vector. More... | |
const std::vector< fitness_vector > & | get_best_f (void) const |
Get the best known fitness vector. More... | |
void | set_best_x (const std::vector< decision_vector > &) |
Sets the best known decision vectors. More... | |
Protected Member Functions | |
virtual double | g_func (const decision_vector &) const =0 |
Distance function. More... | |
Protected Member Functions inherited from pagmo::problem::base | |
virtual bool | equality_operator_extra (const base &) const |
Extra requirements for equality. More... | |
virtual bool | compare_fc_impl (const fitness_vector &, const constraint_vector &, const fitness_vector &, const constraint_vector &) const |
Implementation of simultaneous fitness-constraint comparison. More... | |
void | estimate_sparsity (const decision_vector &, int &lenG, std::vector< int > &iGfun, std::vector< int > &jGvar) const |
Heuristics to estimate the sparsity pattern of the problem. More... | |
void | estimate_sparsity (int &lenG, std::vector< int > &iGfun, std::vector< int > &jGvar) const |
Heuristics to estimate the sparsity pattern of the problem. More... | |
virtual void | compute_constraints_impl (constraint_vector &, const decision_vector &) const |
Implementation of constraint computation. More... | |
virtual bool | compare_constraints_impl (const constraint_vector &, const constraint_vector &) const |
Implementation of constraint vector comparison. More... | |
virtual bool | compare_fitness_impl (const fitness_vector &, const fitness_vector &) const |
Implementation of fitness vectors comparison. More... | |
virtual void | objfun_impl (fitness_vector &f, const decision_vector &x) const =0 |
Objective function implementation. More... | |
Friends | |
class | boost::serialization::access |
Additional Inherited Members | |
Public Types inherited from pagmo::problem::base | |
typedef decision_vector::size_type | size_type |
Problem's size type: the same as pagmo::decision_vector's size type. | |
typedef fitness_vector::size_type | f_size_type |
Fitness' size type: the same as pagmo::fitness_vector's size type. | |
typedef constraint_vector::size_type | c_size_type |
Constraints' size type: the same as pagmo::constraint_vector's size type. | |
Static Public Attributes inherited from pagmo::problem::base | |
static const std::size_t | cache_capacity = 5 |
Capacity of the internal caches. | |
Base DTLZ Multi-objective optimization problem.
The DTLZ test suite was introduced by Deb et. al in order to create benchmark problems with various features that are scalable to any number of objectives and dimensions. The first seven DTLZ problems are constructed with a bottom up approach: First, the pareto-optimal front is described by a surface. Then, parallel layers of this surface are used to build the remainder of a decision space. For this, a distance function g is introduced which is minimized for pareto-optimal solutions. By evaluation of the g-function we thus get information how close the a solution is to the Pareto-optimal front. This is used to define a simple convergence metric (p-distance) that is average value of the g-function over all individuals.
The first seven DTLZ problems are already implemented in PaGMO but you can create your own DTLZ-style problems by subclassing this base class. In order to do this, you have to implement a g-function. The shape of the front itself has to be defined in the implementation of the objective function. The p-distance and a generic 3d-plot will then automatically be available for your new problem.
Definition at line 53 of file base_dtlz.h.
|
protectedpure virtual |
Distance function.
This pure virtual function is re-implemented in the derived classes and is used to compute the distance of a point from the Pareto front