|
| noisy (const base &=ackley(1), unsigned int trials=1, const double param_first=0.0, const double param_second=0.1, noise_type=NORMAL, unsigned int seed=0u) |
|
| noisy (const noisy &) |
| Copy Constructor. Performs a deep copy.
|
|
base_ptr | clone () const |
| Clone method.
|
|
std::string | get_name () const |
| Get problem's name. More...
|
|
void | set_noise_param (double, double) |
|
double | get_param_first () const |
|
double | get_param_second () const |
|
| base_stochastic (int, unsigned int=0u) |
| Constructor from global dimension and random seed. More...
|
|
| base_stochastic (int, int, int, int, int, const double &, unsigned int) |
| Constructor from global dimension, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More...
|
|
| base_stochastic (int, int, int, int, int, const std::vector< double > &, unsigned int) |
| Constructor from global dimension, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance vector. More...
|
|
unsigned int | get_seed () const |
| Gets the pseudo random generator seed. More...
|
|
void | set_seed (unsigned int) const |
| Sets the pseudo random generator seed. More...
|
|
| base (int, int=0, int=1, int=0, int=0, const double &=0) |
| Constructor from global dimension, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More...
|
|
| base (int, int, int, int, int, const std::vector< double > &) |
| Constructor from global dimension, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More...
|
|
| base (const double &, const double &, int, int=0, int=1, int=0, int=0, const double &=0) |
| Constructor from values for lower and upper bounds, global dimension, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More...
|
|
| base (const decision_vector &, const decision_vector &, int=0, int=1, int=0, int=0, const double &=0) |
| Constructor from upper/lower bounds, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More...
|
|
template<std::size_t N> |
| base (const double(&v1)[N], const double(&v2)[N], int ni=0, int nf=1, int nc=0, int nic=0, const double &c_tol=0) |
| Constructor from raw arrays, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More...
|
|
template<class Iterator1 , class Iterator2 > |
| base (Iterator1 start1, Iterator1 end1, Iterator2 start2, Iterator2 end2, int ni=0, int nf=1, int nc=0, int nic=0, const double &c_tol=0) |
| Constructor from iterators, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More...
|
|
virtual | ~base () |
| Trivial destructor. More...
|
|
std::string | human_readable () const |
| Return human readable representation of the problem. More...
|
|
bool | operator== (const base &) const |
| Equality operator. More...
|
|
bool | operator!= (const base &) const |
| Inequality operator. More...
|
|
bool | is_compatible (const base &) const |
| Compatibility operator. More...
|
|
bool | compare_x (const decision_vector &, const decision_vector &) const |
| Compare decision vectors. More...
|
|
bool | verify_x (const decision_vector &) const |
| Verify compatibility of decision vector x with problem. More...
|
|
bool | compare_fc (const fitness_vector &, const constraint_vector &, const fitness_vector &, const constraint_vector &) const |
| Simultaneous fitness-constraint comparison. More...
|
|
virtual void | pre_evolution (population &) const |
| Pre-evolution hook. More...
|
|
virtual void | post_evolution (population &) const |
| Post-evolution hook. More...
|
|
virtual void | set_sparsity (int &lenG, std::vector< int > &iGfun, std::vector< int > &jGvar) const |
| Sets the sparsity pattern of the gradient. More...
|
|
const decision_vector & | get_lb () const |
| Lower bounds getter. More...
|
|
const decision_vector & | get_ub () const |
| Upper bounds getter. More...
|
|
void | set_bounds (const decision_vector &, const decision_vector &) |
| Bounds setter from pagmo::decision_vector. More...
|
|
template<class Iterator1 , class Iterator2 > |
void | set_bounds (Iterator1 start1, Iterator1 end1, Iterator2 start2, Iterator2 end2) |
| Bounds setter from iterators. More...
|
|
template<std::size_t N> |
void | set_bounds (const double(&v1)[N], const double(&v2)[N]) |
| Bounds setter from raw arrays. More...
|
|
void | set_bounds (const double &, const double &) |
| Set bounds to specified values. More...
|
|
void | set_bounds (int, const double &, const double &) |
| Set bounds to specified values. More...
|
|
void | set_lb (const decision_vector &) |
| Set lower bounds from pagmo::decision_vector. More...
|
|
void | set_lb (int, const double &) |
| Set specific lower bound to value. More...
|
|
void | set_lb (const double &) |
| Set all lower bounds to value. More...
|
|
template<class Iterator > |
void | set_lb (Iterator start, Iterator end) |
| Lower bounds setter from iterators. More...
|
|
template<std::size_t N> |
void | set_lb (const double(&v)[N]) |
| Lower bounds setter from raw array. More...
|
|
void | set_ub (const decision_vector &) |
| Set upper bounds from pagmo::decision_vector. More...
|
|
void | set_ub (int, const double &) |
| Set specific upper bound to value. More...
|
|
void | set_ub (const double &) |
| Set all upper bounds to value. More...
|
|
template<class Iterator > |
void | set_ub (Iterator start, Iterator end) |
| Upper bounds setter from iterators. More...
|
|
template<std::size_t N> |
void | set_ub (const double(&v)[N]) |
| Upper bounds setter from raw array. More...
|
|
unsigned int | get_fevals () const |
| Return number of function evaluations. More...
|
|
unsigned int | get_cevals () const |
| Return number of constraints function evaluations. More...
|
|
size_type | get_dimension () const |
| Return global dimension. More...
|
|
size_type | get_i_dimension () const |
| Return integer dimension. More...
|
|
f_size_type | get_f_dimension () const |
| Return fitness dimension. More...
|
|
c_size_type | get_c_dimension () const |
| Return global constraints dimension. More...
|
|
c_size_type | get_ic_dimension () const |
| Return inequality constraints dimension. More...
|
|
const std::vector< double > & | get_c_tol () const |
| Return constraints tolerance. More...
|
|
double | get_diameter () const |
| Get the diameter of the problem. More...
|
|
constraint_vector | compute_constraints (const decision_vector &) const |
| Compute constraints and return constraint vector. More...
|
|
void | compute_constraints (constraint_vector &, const decision_vector &) const |
| Compute constraints and write them into contraint vector. More...
|
|
bool | compare_constraints (const constraint_vector &, const constraint_vector &) const |
| Compare constraint vectors. More...
|
|
bool | test_constraint (const constraint_vector &, const c_size_type &) const |
| Test i-th constraint of c (using tolerance information). More...
|
|
bool | feasibility_x (const decision_vector &) const |
| Test feasibility of decision vector. More...
|
|
bool | feasibility_c (const constraint_vector &) const |
| Test feasibility of constraint vector. More...
|
|
fitness_vector | objfun (const decision_vector &) const |
| Return fitness of pagmo::decision_vector. More...
|
|
void | objfun (fitness_vector &, const decision_vector &) const |
| Write fitness of pagmo::decision_vector into pagmo::fitness_vector. More...
|
|
bool | compare_fitness (const fitness_vector &, const fitness_vector &) const |
| Compare fitness vectors. More...
|
|
void | reset_caches () const |
| Reset internal caches. More...
|
|
const std::vector< constraint_vector > & | get_best_c (void) const |
| Get the best known constraint vector. More...
|
|
const std::vector< decision_vector > & | get_best_x (void) const |
| Get the best known decision vector. More...
|
|
const std::vector< fitness_vector > & | get_best_f (void) const |
| Get the best known fitness vector. More...
|
|
void | set_best_x (const std::vector< decision_vector > &) |
| Sets the best known decision vectors. More...
|
|
Noisy meta-problem.
A meta-problem that transforms a problem into its stochastic version by injecting noises to the fitness vector (and constraint vector) with either uniform or gaussian distribution. The resulting value is then averaged upon m_trials as to rbe able to reproduce a typical set-up in Evolutionary Robotics, but aso in stochastic optimization
NOTE: for m_trials->infinity one recovers a deterministic problem, but the objective function computation soon becomes very expensive. The trade-off is to keep m_trials small, while being able to get good convergence.
- Author
- Yung-Siang Liau (liauy.nosp@m.s@gm.nosp@m.ail.c.nosp@m.om)
-
Dario Izzo (dario.nosp@m..izz.nosp@m.o@gma.nosp@m.il.c.nosp@m.om)
Definition at line 55 of file noisy.h.