PaGMO  1.1.5
Public Member Functions | Protected Member Functions | Friends
pagmo::util::racing::metrics_algos::standard Class Reference
Inheritance diagram for pagmo::util::racing::metrics_algos::standard:
Inheritance graph
[legend]

Public Member Functions

 standard (const std::vector< problem::base_ptr > &probs=std::vector< problem::base_ptr >(), const std::vector< algorithm::base_ptr > &algos=std::vector< algorithm::base_ptr >(), unsigned int seed=0, unsigned int pop_size=100)
 Constructor of the performance metrics of algorithms on a single problem. More...
 
- Public Member Functions inherited from pagmo::problem::base_stochastic
 base_stochastic (int, unsigned int=0u)
 Constructor from global dimension and random seed. More...
 
 base_stochastic (int, int, int, int, int, const double &, unsigned int)
 Constructor from global dimension, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More...
 
 base_stochastic (int, int, int, int, int, const std::vector< double > &, unsigned int)
 Constructor from global dimension, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance vector. More...
 
unsigned int get_seed () const
 Gets the pseudo random generator seed. More...
 
void set_seed (unsigned int) const
 Sets the pseudo random generator seed. More...
 
- Public Member Functions inherited from pagmo::problem::base
 base (int, int=0, int=1, int=0, int=0, const double &=0)
 Constructor from global dimension, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More...
 
 base (int, int, int, int, int, const std::vector< double > &)
 Constructor from global dimension, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More...
 
 base (const double &, const double &, int, int=0, int=1, int=0, int=0, const double &=0)
 Constructor from values for lower and upper bounds, global dimension, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More...
 
 base (const decision_vector &, const decision_vector &, int=0, int=1, int=0, int=0, const double &=0)
 Constructor from upper/lower bounds, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More...
 
template<std::size_t N>
 base (const double(&v1)[N], const double(&v2)[N], int ni=0, int nf=1, int nc=0, int nic=0, const double &c_tol=0)
 Constructor from raw arrays, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More...
 
template<class Iterator1 , class Iterator2 >
 base (Iterator1 start1, Iterator1 end1, Iterator2 start2, Iterator2 end2, int ni=0, int nf=1, int nc=0, int nic=0, const double &c_tol=0)
 Constructor from iterators, integer dimension, fitness dimension, global constraints dimension, inequality constraints dimension and constraints tolerance. More...
 
virtual ~base ()
 Trivial destructor. More...
 
std::string human_readable () const
 Return human readable representation of the problem. More...
 
virtual std::string human_readable_extra () const
 Extra information in human readable format. More...
 
bool operator== (const base &) const
 Equality operator. More...
 
bool operator!= (const base &) const
 Inequality operator. More...
 
bool is_compatible (const base &) const
 Compatibility operator. More...
 
bool compare_x (const decision_vector &, const decision_vector &) const
 Compare decision vectors. More...
 
bool verify_x (const decision_vector &) const
 Verify compatibility of decision vector x with problem. More...
 
bool compare_fc (const fitness_vector &, const constraint_vector &, const fitness_vector &, const constraint_vector &) const
 Simultaneous fitness-constraint comparison. More...
 
virtual void pre_evolution (population &) const
 Pre-evolution hook. More...
 
virtual void post_evolution (population &) const
 Post-evolution hook. More...
 
virtual void set_sparsity (int &lenG, std::vector< int > &iGfun, std::vector< int > &jGvar) const
 Sets the sparsity pattern of the gradient. More...
 
const decision_vectorget_lb () const
 Lower bounds getter. More...
 
const decision_vectorget_ub () const
 Upper bounds getter. More...
 
void set_bounds (const decision_vector &, const decision_vector &)
 Bounds setter from pagmo::decision_vector. More...
 
template<class Iterator1 , class Iterator2 >
void set_bounds (Iterator1 start1, Iterator1 end1, Iterator2 start2, Iterator2 end2)
 Bounds setter from iterators. More...
 
template<std::size_t N>
void set_bounds (const double(&v1)[N], const double(&v2)[N])
 Bounds setter from raw arrays. More...
 
void set_bounds (const double &, const double &)
 Set bounds to specified values. More...
 
void set_bounds (int, const double &, const double &)
 Set bounds to specified values. More...
 
void set_lb (const decision_vector &)
 Set lower bounds from pagmo::decision_vector. More...
 
void set_lb (int, const double &)
 Set specific lower bound to value. More...
 
void set_lb (const double &)
 Set all lower bounds to value. More...
 
template<class Iterator >
void set_lb (Iterator start, Iterator end)
 Lower bounds setter from iterators. More...
 
template<std::size_t N>
void set_lb (const double(&v)[N])
 Lower bounds setter from raw array. More...
 
void set_ub (const decision_vector &)
 Set upper bounds from pagmo::decision_vector. More...
 
void set_ub (int, const double &)
 Set specific upper bound to value. More...
 
void set_ub (const double &)
 Set all upper bounds to value. More...
 
template<class Iterator >
void set_ub (Iterator start, Iterator end)
 Upper bounds setter from iterators. More...
 
template<std::size_t N>
void set_ub (const double(&v)[N])
 Upper bounds setter from raw array. More...
 
unsigned int get_fevals () const
 Return number of function evaluations. More...
 
unsigned int get_cevals () const
 Return number of constraints function evaluations. More...
 
size_type get_dimension () const
 Return global dimension. More...
 
size_type get_i_dimension () const
 Return integer dimension. More...
 
f_size_type get_f_dimension () const
 Return fitness dimension. More...
 
c_size_type get_c_dimension () const
 Return global constraints dimension. More...
 
c_size_type get_ic_dimension () const
 Return inequality constraints dimension. More...
 
const std::vector< double > & get_c_tol () const
 Return constraints tolerance. More...
 
double get_diameter () const
 Get the diameter of the problem. More...
 
virtual std::string get_name () const
 Get problem's name. More...
 
constraint_vector compute_constraints (const decision_vector &) const
 Compute constraints and return constraint vector. More...
 
void compute_constraints (constraint_vector &, const decision_vector &) const
 Compute constraints and write them into contraint vector. More...
 
bool compare_constraints (const constraint_vector &, const constraint_vector &) const
 Compare constraint vectors. More...
 
bool test_constraint (const constraint_vector &, const c_size_type &) const
 Test i-th constraint of c (using tolerance information). More...
 
bool feasibility_x (const decision_vector &) const
 Test feasibility of decision vector. More...
 
bool feasibility_c (const constraint_vector &) const
 Test feasibility of constraint vector. More...
 
fitness_vector objfun (const decision_vector &) const
 Return fitness of pagmo::decision_vector. More...
 
void objfun (fitness_vector &, const decision_vector &) const
 Write fitness of pagmo::decision_vector into pagmo::fitness_vector. More...
 
bool compare_fitness (const fitness_vector &, const fitness_vector &) const
 Compare fitness vectors. More...
 
void reset_caches () const
 Reset internal caches. More...
 
const std::vector< constraint_vector > & get_best_c (void) const
 Get the best known constraint vector. More...
 
const std::vector< decision_vector > & get_best_x (void) const
 Get the best known decision vector. More...
 
const std::vector< fitness_vector > & get_best_f (void) const
 Get the best known fitness vector. More...
 
void set_best_x (const std::vector< decision_vector > &)
 Sets the best known decision vectors. More...
 

Protected Member Functions

 standard (const standard &)
 Copy Constructor. Performs a deep copy.
 
problem::base_ptr clone () const
 Clone method.
 
void objfun_impl (fitness_vector &, const decision_vector &) const
 The performance of an algorithm encoded in the fitness function. More...
 
void compute_constraints_impl (constraint_vector &, const decision_vector &) const
 The performance of an algorithm in terms of a constraint vector. More...
 
- Protected Member Functions inherited from pagmo::problem::base
virtual bool equality_operator_extra (const base &) const
 Extra requirements for equality. More...
 
virtual bool compare_fc_impl (const fitness_vector &, const constraint_vector &, const fitness_vector &, const constraint_vector &) const
 Implementation of simultaneous fitness-constraint comparison. More...
 
void estimate_sparsity (const decision_vector &, int &lenG, std::vector< int > &iGfun, std::vector< int > &jGvar) const
 Heuristics to estimate the sparsity pattern of the problem. More...
 
void estimate_sparsity (int &lenG, std::vector< int > &iGfun, std::vector< int > &jGvar) const
 Heuristics to estimate the sparsity pattern of the problem. More...
 
virtual void compute_constraints_impl (constraint_vector &, const decision_vector &) const
 Implementation of constraint computation. More...
 
virtual bool compare_constraints_impl (const constraint_vector &, const constraint_vector &) const
 Implementation of constraint vector comparison. More...
 
virtual bool compare_fitness_impl (const fitness_vector &, const fitness_vector &) const
 Implementation of fitness vectors comparison. More...
 

Friends

class boost::serialization::access
 

Additional Inherited Members

- Public Types inherited from pagmo::problem::base
typedef decision_vector::size_type size_type
 Problem's size type: the same as pagmo::decision_vector's size type.
 
typedef fitness_vector::size_type f_size_type
 Fitness' size type: the same as pagmo::fitness_vector's size type.
 
typedef constraint_vector::size_type c_size_type
 Constraints' size type: the same as pagmo::constraint_vector's size type.
 
- Static Public Attributes inherited from pagmo::problem::base
static const std::size_t cache_capacity = 5
 Capacity of the internal caches.
 
- Protected Attributes inherited from pagmo::problem::base_stochastic
rng_double m_drng
 Random number generator for double-precision floating point values.
 
rng_uint32 m_urng
 Random number generator for unsigned integer values.
 
unsigned int m_seed
 Seed of the random number generator.
 

Detailed Description

This class implements the mechanism to assign a quality measure to each member of a set of algorithms, while being treated as "a population of algorithms". Required by internally by race_algo to transform the racing of algorithm into racing of individuals.

The decision vector in this case is a single integer, representing which algorithm is to be invoked to evolve the population, e.g. if x = [k], this problem returns some measure of how well the k-th algorithm could evolve a population.

The standard way of assigning fitness to an algorithm contains two cases: (1) Single problem: Algo's fitness assigned to be the fitness of the evolved champion on the problem, evolved by the specified algorithm. (2) Multiple problems: Randomly sample a single problem (based on current seed) from the pool of problems, then proceed as (1).

Currently supports box constrained and equality / inequality constrained single-objective problems

Definition at line 51 of file race_algo.cpp.

Constructor & Destructor Documentation

pagmo::util::racing::metrics_algos::standard::standard ( const std::vector< problem::base_ptr > &  probs = std::vector<problem::base_ptr>(),
const std::vector< algorithm::base_ptr > &  algos = std::vector<algorithm::base_ptr>(),
unsigned int  seed = 0,
unsigned int  pop_size = 100 
)

Constructor of the performance metrics of algorithms on a single problem.

The performance of each algorithm is encoded in the fitness implementation of this meta-problem. For example, to obtain the performance of the first algorithm, one can do (in fact only race_algo should know about this):

std::vector<unsigned int> idx = {0}; fitness_values f = this->objfun(idx);

Parameters
[in]probsstd::vector of pagmo::problem::base_ptr against which the algorithms will be evaluated
[in]algosstd::vector of pagmo::algorithm::base_ptr
[in]seedSeed to be used internally as a stochastic problem
[in]pop_sizeSize of the population to be evolved
Exceptions
value_errorif there are incompatible algorithms or problems in the supplied sets (multi-objective algorithms not supported yet).

Definition at line 109 of file race_algo.cpp.

Member Function Documentation

void pagmo::util::racing::metrics_algos::standard::compute_constraints_impl ( constraint_vector c,
const decision_vector x 
) const
protected

The performance of an algorithm in terms of a constraint vector.

Similar to objfun_impl(), the constraint violation is determined by the champion of the evolved population.

Definition at line 182 of file race_algo.cpp.

void pagmo::util::racing::metrics_algos::standard::objfun_impl ( fitness_vector f,
const decision_vector x 
) const
protectedvirtual

The performance of an algorithm encoded in the fitness function.

The performance of an algorithm is defined as the champion a population, after being evolved by the algorithm.

Implements pagmo::problem::base.

Definition at line 171 of file race_algo.cpp.


The documentation for this class was generated from the following file: